Name		
Date		_

Indirect Reasoning (Proof by Contradiction)

All possibilities are considered
All but one are eliminated (proven false)
The remaining one is the answer (proven true)

Example: The classic board game Clue is played using Inductive Reasoning.

In the game there are Suspects, Weapons, & Rooms.

To win the game you need to determine who the murder was, what the murder weapon was and in which room the murder took place.

roje nov 19mm	
n Chara	
ric Wegradi	
iai Ampari	(
rs. White	

Using the clue sheet, you eliminate possibilities.

Here, all suspects have been ruled out. Thus you conclude that the murderer must be Professor Plum.

Indirect Reasoning Steps

Generally, we try to apply indirect reasoning to problems that have 2 possibilities:

"it is" or "it isn't"

Steps:	
1. Assure the opposite what you are proving.	
2. JAOW FROM PROM PROS 46/	we cold coldings
logical contradiction.	the b
3. Conclude what are are proving is +	rue ,

Example:

Given: You have been dealt the Colonel Mustard card.

Prove: Colonel Mustard is not the murder.

Proof: 1. Assume (.m. is the muster.
2. then his card in Secret. Envelope. But, his care is in my nade.
this a contradiction because his care can't be both Places at sice.
3. Thus (.m. is not the ownder.

Let's Try a Geometry Example:

Given: AABC

Prove: $\triangle ABC$ can't have more than 1 obtuse angle.

Proof: 1. Aseme BAK has 2 obtuse <5		
2. Then each of the two obtuse angles is greater than 90°. So, their sum is <u>monthan</u> . This is a contradiction because <u>a b and the contradiction</u> .		
3. this DABC (an't have more than I	phose	C

One more Example:

Given: $\overline{AC} \cong \overline{DF}$

 $\overline{BC} \cong \overline{EF}$

 $m\angle C \neq m\angle F$

Prove: $AB \neq DE$

Proof:

1. Assume AB= DE

2. this makes DABC = DDEF by 999. Her < C = CF by corr. parts = N'S. But this is a contradiction because we are given mcc for CF.

3. This AB + DE